
hhh

Multiple Inheritance
in Object-Oriented
Attribute Grammars

J. Grosch

hhh

hhh
GESELLSCHAFT FÜR MATHEMATIK
UND DATENVERARBEITUNG MBH

FORSCHUNGSSTELLE FÜR
PROGRAMMSTRUKTUREN
AN DER UNIVERSITÄT KARLSRUHE

hhh

Project

Compiler Generation

hhh

Multiple Inheritance in Object-Oriented Attribute Grammars

Josef Grosch

Feb. 25, 1992

hhh

Report No. 28

Copyright  1992 GMD

Gesellschaft für Mathematik und Datenverarbeitung mbH
Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1
D-7500 Karlsruhe

1

Multiple Inheritance in Object-Oriented Attribute Grammars

Josef Grosch
GMD Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1, D-7500 Karlsruhe, Germany
grosch@karlsruhe.gmd.de

Abstract Object-oriented attribute grammars are a promising notation for language
specifications. They have similar benefits as object-orientation in the area of programming
languages. They support a compact and flexible style for language specifications. Existing
definitions can be easily reused as well as the associated default behaviour. New definitions can
be derived from existing ones by specialization. While previous approaches have been restricted
to single inheritance this paper defines object-oriented attribute grammars with multiple inheri-
tance. A system has been developed that processes those attribute grammars. We describe an
example that uses multiple inheritance and compare the terminology and concepts of related
areas.

Keywords attribute grammar, object-orientation, multiple inheritance

1. Introduction

Object-oriented attribute grammars have been introduced by several authors (e. g. [Gro90a,
Hed89]) as a promising notation for attribute grammars. An overview of the current state of the
art in this area is given in [Kos91]. The benefits are comparable to those of object-oriented pro-
gramming languages. It is a concise notation and flexible notation for language specifications.
The reuse of existing definitions is supported by the possibility to specify new definitions as
extensions or specializations of existing ones. The duplication of information is avoided
because common parts can be "factored out".

While the main building blocks of object-oriented programming languages are classes, the
nonterminals play this part in object-oriented attribute grammars. More precisely, the notions
nonterminal and production rule are unified. This means that there is exactly one production rule
for every nonterminal. Additionally, a relation between nonterminals is specified, for example
using chain rules, which describes a subtype relation or class hierarchy among the nonterminals.
This subtype relation serves for two purposes. First, it allows to derive several different strings
from one nonterminal because a nonterminal may be replaced by a right-hand side correspond-
ing to a nonterminal that is a subtype of the replaced one. Second, the subtype relation describes
the path for inheritance among the nonterminals. The items that are subject to inheritance are
right-hand side elements, attributes, and attribute computations. Inherited attribute computations
may be overwritten in the subtype by giving different computations for the same attributes.

Before we proceed we have to clarify the terminology: Originally, context-free grammars
as well as attribute grammars are derivation systems for strings. In this paper we are interested in
the specification of semantic analysis which is based on an abstract syntax tree. Therefore we
use grammars to describe the structure of trees instead of strings.

In order to avoid confusion between the terms class, nonterminal, terminal, and (sub)type we
will use the term node type to cover all those meanings. The term node type is motivated through
a realistic description of what is happening: The node types specify the structure of the nodes of
the abstract syntax tree.

2

The attributes in attribute grammars are usually classified as synthesized and inherited. Follow-
ing Hedin [Hed89] we use the term ancestral attribute instead of the standard inherited attribute

since we use the term inherited in the object-oriented sense.

There is one problem that arises especially from the combination of ancestral attributes and
inheritance. Let A, B, and C be node types and let B be a subtype of A (B ⊆ A) having one
ancestral attribute x. If the right-hand side of C contains an A, we have to know whether to com-
pute the attribute A.x or not. The static type is A, but the dynamic type can be any subtype, that
is A or B. If it is B we have to compute A.x, if it is A we may not compute it. The notions node
type, subtype, and right-hand side are defined in section 2.

There are several solutions to this problem. First, one can restrict the definition of ancestral
attributes to top level node types, only. This makes the reuse of existing node types very hard in
particular in combination with multiple inheritance.

Second, one could use a dynamic dispatch technique which inspects the dynamic type of
the right-hand side child and decides during runtime whether to compute A.x or not. This solu-
tion is rather inefficient because of its runtime overhead.

Most existing systems therefore allow single inheritance, only, with the additional restric-
tion that ancestral attributes have to be defined at top level node types. The last restriction is not
severe because it somehow coincides in a natural way with the style of usual attribute grammars.
Hedin [Hed89] follows this argumentation and calls object-oriented attribute grammars having
the above problem not well formed.

This paper introduces a third solution to the above mentioned problem. It allows for a res-
tricted form of multiple inheritance and still retains the capability to decide at generation time
which ancestral attributes have to be computed. Attribute evaluators can still be implemented
efficiently as dynamic dispatch is avoided.

In section 2 we formally define object-oriented attribute grammars with single inheritance.
Section 3 contains two simple examples using single inheritance. Section 4 extends the
definition of object-oriented attribute grammars to multiple inheritance. Section 5 presents an
elaborate example with multiple inheritance. In section 6 we compare our approach with pure
attribute grammars and with object-oriented programming in order to reveal the common proper-
ties as well as the differences. Section 7 summarizes the results.

2. Single Inheritance

This section formally defines the principles of object-oriented attribute grammars with single
inheritance. As starting point we shortly recall the traditional definition of attribute grammars
[Knu68, Knu71].

An attribute grammar is an extension of a context-free grammar. A context-free grammar
is denoted by G = (N, T, P, Z) where N is the set of nonterminals, T is the set of terminals, P is
the set of productions, and Z ∈ N is the start symbol, which cannot appear on the right-hand side
of any production in P. The set V = N ∪ T is called the vocabulary. Each production p ∈ P has
the form p: X → α where X ∈ N and α ∈ V*. The relation ⇒ (directly derives) is defined over
strings in V* as follows: if p: X → α, p ∈ P, νXω ∈ V*, ναω ∈ V* then νXω ⇒ ναω. The rela-
tion ⇒* is the transitive and reflexive closure of ⇒. The language L(G) is defined as
L(G) = { w | Z ⇒* w }.

An attribute grammar augments a context-free grammar by attributes and attribute compu-
tations. A set of attributes is associated with each symbol in V. Attribute computations are
added to every production describing how to compute attribute values in the local context of a
production. This simple view of attribute grammars shall suffice for the scope of this paper.

3

In general there can be several productions having the same nonterminal on the left-hand
side. This allows for different derivations starting from one nonterminal. In object-oriented
attribute grammars, one production is permitted for one left-hand side symbol, only. This way
the notions production and nonterminal (vocabulary respectively) are unified and are termed
node type as already mentioned. Several different derivations are made possible through the
newly introduced subtype relation.

An object-oriented attribute grammar is formally denoted by G = (N, T, A, C, Z) where N
is the set of nonterminals, T is the set of terminals, A is the set of attributes, C is the set of attri-
bute computations, and Z is the start symbol (Z ∈ N). The set NT = N ∪ T is called the set of
node types. Each element n ∈ NT is associated with a tuple n: (R, B, D, S) where R ∈ NT* is
the right-hand side, B ∈ A* is the set of attributes, D ∈ C* is the set of attribute computations,
and S ∈ NT is the base type.

The elements of NT induce a relation ⊆ (subtype) over NT as follows: if
n: (α, β, δ, m) ∈ NT then n ⊆ m. m is called base or super type, n is called derived type or sub-

type. The relation ⊆ is transitive: if n ⊆ m and m ⊆ o then n ⊆ o.

The relation ⇒ (directly derives) is defined here only for the context-free or syntactic part
of an object-oriented attribute grammar. There are two possibilities for derivations which are
defined over strings in NT* as follows:

if νniω ∈ NT* and n1: (α1, β1, δ1, n0) ∈ NT,
n2: (α2, β2, δ2, n1) ∈ NT,

. . .

ni: (αi, βi, δi, ni−1) ∈ NT then νniω ⇒ να1α2
. . . αiω.

if νnω ∈ NT* and m ⊆ n then νnω ⇒ νmω.

We assume the existence of a predefined node type n0: (ø, ø, ø, −) with empty components. In a
direct derivation step, a node type can be replaced by its right-hand side (α1

. . . αi) or by one of
its subtypes (m). All replacing right-hand sides are the union of right-hand sides according to the
subtype hierarchy. The relation ⇒* is the transitive and reflexive closure of ⇒. The language
L(G) is defined as L(G) = { w | Z ⇒* w }.

The subtype relation has the following properties: a derived node type inherits the
right-hand side, the attributes, and the attribute computations from its base type. As consequence
of the transitive nature of this relation, a derived type inherits all the components from all base
types according to the subtype hierarchy. It may extend the set of inherited items by defining
additional right-hand side elements, attributes, or attribute computations. All accumulated
right-hand side elements and attributes must be distinct because they are united. An attribute
computation for an attribute may overwrite an inherited one.

3. Example

We implemented an attribute grammar system called ag based on object-oriented attribute gram-
mars which is part of the Karlsruhe Toolbox for Compiler Construction [GrE90]. It supports the
kinds of single and multiple inheritance described in this paper. The following examples of
object-oriented attribute grammars with single inheritance are written in the specification
language of ag. The language tries to adhere to the conventional style of context-free grammars
as far as possible. It offers far more features for practical usage than can be explained here. The
interested reader is referred to the user’s manual [Gro89].

An attribute grammar is given in the form of nested node type definitions. The nesting
expresses the subtype hierarchy or the subtype relation. A node type definition consists of pro-
perties of the node type followed by a list of subtype definitions enclosed in angle brackets < >.
The properties include the structural or syntactic definition (right-hand side), attribute

4

definitions, and attribute computations.

Example 1:

Expr = [Value: INTEGER] { Value := 0; } <

Add = Lop: Expr Rop: Expr { Value := Lop:Value + Rop:Value; } .

Sub = Lop: Expr Rop: Expr { Value := Lop:Value - Rop:Value; } .

Const = Integer { Value := Integer:Value; } .

> .

Integer = [Value: INTEGER] .

The example describes the evaluation of primitive expressions. Attribute definitions are
given in brackets []. The attribute Value is associated with all subtypes of Expr with a default
computation "Value := 0;". The attribute computations are written in curly brackets { }. The
computations for the node types Add, Sub, and Const overwrite the computation given in the
base type Expr.

The structural or syntactic definition is given as a sequence of node type names, possibly
prefixed by a selector (Lop, Rop) allowing unambiguous access to the component structures.

Example 2:

Stats = <

NoStat = .

Stat = Next: Stats [Pos: tPosition] <

If = Expr Then: Stats Else: Stats .

While = Expr Stats .

Call = Actuals [Ident: tIdent] .

> .

> .

Example 2 describes a possibility for the specification of the abstract syntax of statement
sequences. The example uses the node type Stats to describe a sequence and the node type Stat

to describe various statements. The node types are related as subtypes showing a non-trivial sub-
type relation of nesting depth two. The subtype relation is: NoStat ⊆ Stats, Stat ⊆ Stats, If ⊆
Stat, While ⊆ Stat, Call ⊆ Stat. In Example 2 the node types If, While, and Call inherit the child
Next of type Stats and the attribute Pos from the base type Stat. They add their own children and
attributes.

4. Multiple Inheritance

The problem with multiple inheritance mentioned in the introduction can be solved if we distin-
guish two kinds of types: node types and abstract types. An abstract syntax tree is constructed
only out of nodes whose type is a node type - there are no nodes whose type is an abstract one.
While the node types describe production rules or tree nodes the abstract types describe con-
cepts.

An object-oriented attribute grammar with multiple inheritance is formally denoted by G =
(N, T, K, A, C, Z). N, T, A, C, Z represent the same entities as in the single inheritance case. In
particular the set NT = N ∪ T represents the set of node types. K is the set of abstract types.
Every element n ∈ NT is now associated with a quintuple n: (R, B, D, S, L) where R, B, D, and
S are as before. Every element k ∈ K is associated with a quintuple k: (R, B, D, U, L) where
U ∈ K is the base type for the single inheritance mechanism and L ∈ K* is the set of base types
for the multiple inheritance mechanism. We have two inheritance mechanisms which operate
simultaneously. Multiple inheritance behaves similar as single inheritance: A subtype inherits all
properties (right-hand side, attributes, attribute computations) from all its base types.

Why do we need two mechanisms for inheritance? We retained single inheritance for two
reasons: First, it is good to be compatible with existing attribute grammars written in the single

5

inheritance style. Second, the single inheritance notation allows to adhere largely to the conven-
tional style of writing context-free grammars.

The above definition for object-oriented grammars with multiple inheritance distinguishes
two levels (see Fig. 1). The set of abstract types represents the abstract or conceptual level.
These types model concepts and properties which are common to several node types or even to
different programming languages. Abstract types are not used for nodes in the syntax tree. The
set of node types represents production rules of a context-free grammar. The node types describe
the constructs of a programming language. Node types are used to classify the nodes in a syntax
tree.

abstract or
conceptual

level
abstract types

multiple
inheritance

production or
node type

level
node types

single
inheritance

Fig. 1: Inheritance among abstract types and node types

The above definition of multiple inheritance allows multiple inheritance among abstract
types and from abstract types to node types. Among node types, single inheritance is available,
only. Ancestral attributes may be defined for all abstract types and for top level node types. With
this restriction it is statically known for all children of all nodes whether ancestral attributes have
to be computed or not.

5. Example

In this section we present a rather elaborate example for an object-oriented attribute grammar
with multiple inheritance. The example is an excerpt from a specification of the demo language
MiniLAX [Gro90b]. The attribute computations are written directly in the implementation
language which is Modula-2.

The attribute grammar module in Example 3 describes an abstract symbol table. It is
termed abstract because we deal with entities called objects which are not further specified. The
symbol table handles declarations of objects, applications (uses) of objects, and scopes. It does
not specify what kind of objects are to be declared, where those objects are used, and which con-
structs are associated with scopes. We use all upper-case names to denote abstract types.

The first three definitions describe lists of abstract declarations. A declaration DECL is
characterized by an identifier and a reference to a succeeding declaration. The identifier is
described by two attributes Ident and Pos holding an internal representation and a source posi-
tion. The right-hand side child with the selector Next and the node type Decls refers to the
succeeding declaration.

A list of declarations (DECLS) is either empty (NODECLS) or starts with one element of
type DECL. The list has a threaded attribute called Objects. This threaded attribute actually
stands for two attributes called ObjectsIn and ObjectsOut. The attribute computations given for
DECL in curly brackets { } use this threaded attributes(s) to collect all declared objects in a list.
They make use of functions from an external data type. mNoObjects creates an empty list,

6

Example 3:

MODULE SymbolTable

DECLS := [Objects: tObjects THREAD OUT] <

NODECLS := .

DECL := Next: Decls IN [Ident: tIdent IN] [Pos: tPosition IN]

{ Next:ObjectsIn := mObject (ObjectsIn, Ident);

ObjectsOut := Next:ObjectsOut;

CHECK NOT IsDeclared (Ident, ObjectsIn)

==> Error ("identifier already declared", Pos); } .

> .

ENV := [Env: tEnv INH] .

USE <- ENV := [Ident: tIdent IN] [Object: tObjects SYN OUT]

{ Object := Identify (Ident, Env);

CHECK Objectˆ.Kind # NoObject

==> Error ("identifier not declared", Pos); } .

SCOPE <- ENV := [Objects: tObjects SYN] [NewEnv: tEnv SYN]

{ Objects := mNoObjects ();

NewEnv := mEnv (Objects, Env); } .

END SymbolTable

mObject adds a description of an object to a list, and IsDeclared checks for multiple declara-
tions. The latter function is used in a condition (CHECK) that issues an error message in case of
multiple declarations.

The abstract type SCOPE describes scopes such as blocks or procedures. The attribute Env

(for environment) which is inherited from the abstract type ENV describes the set of objects that
is visible at certain locations in a program. Multiple inheritance is expressed by writing an arrow
<- and a list of abstract (base) types behind a type. A scope is supposed to reside in a surround-
ing environment described by the attribute Env and to introduce a new set of declarations
represented by the attribute Objects. It computes a new environment attribute NewEnv valid
inside this scope by calling the external function mEnv. The computation of the attribute
Objects is a dummy to satisfy the completeness requirement of attribute grammars.

The abstract type USE describes the application or use of objects. A construct that uses an
object has an attribute giving the identifier of the object (Ident). This construct possesses an
environment attribute Env that describes all objects visible at this construct. The attribute Object

is used to refer to the symbol table entry of the used object. The external function Identify takes
the attributes Ident and Env as arguments and computes the attribute Object. In case of the use
of an undeclared identifier the CHECK statement will issue an appropriate error message.

The attribute definitions in Example 3 use a few keywords. These associate so-called pro-
perties with the attributes. IN characterizes input attributes that have already a value when attri-
bute evaluation starts. The value is usually supplied during tree construction. OUT characterizes
output attributes whose value is needed after attribute evaluation. Those attributes may not be
removed from the tree nodes by an optimizer. SYN and INH classify the attributes as syn-

thesized and ancestral.

Example 4 shows the connection of the abstract symbol table with the abstract syntax of the
language MiniLAX. The subset of the node type definitions relevant for the symbol table prob-
lem is given. Whereas abstract types are introduced with the symbol := the character = is used
for node types.

A concrete list of declarations is described by the node type Decls which is a subtype of the
abstract type DECLS. A single declaration is described by the node type Decl which inherits

7

Example 4:

MODULE AbstractSyntax

MiniLax = Proc .

Decls <- DECLS = <

NoDecl = .

Decl <- DECL = <

Var = Type .

Proc = Formals Decls Stats .

> .

> .

Stats = <

NoStat = .

Stat = Next: Stats <

Assign = Adr Expr [Pos: tPosition] .

Call <- USE = Actuals [Pos: tPosition] .

If = Expr Then: Stats Else: Stats .

While = Expr Stats .

Read = Adr .

Write = Expr .

> .

> .

Expr = [Pos: tPosition] <

Binary = Lop: Expr Rop: Expr [Operator: SHORTCARD] .

Unary = Expr [Operator: SHORTCARD] .

IntConst = [Value: INTEGER] .

RealConst = [Value: REAL] .

BoolConst = [Value: BOOLEAN] .

Adr = <

Index = Adr Expr .

Ident <- USE = .

> .

> .

END AbstractSyntax

from DECL. Two specializations are derived from the node type Decl describing two kinds of
declarations: variables and procedures (Var and Proc). Through inheritance from DECL every
Decl specifies already an identifier (attributes Ident and Pos) and a reference to a succeeding
declaration (attribute Next). Therefore the specializations have just to add the missing com-
ponents which is a description of the type in case of a variable and the formal parameters, the
local declarations, and the procedure body (Formals, Decls, Stats) in case of a procedure.

The language knows two locations where objects are used: at a procedure call and at a vari-
able occurring in an expression. Therefore the node types Call and Ident are subtypes of the
abstract type USE. The node type Call specializes the usage of an object by adding a list of
actual parameters and an attribute Pos which is needed for an error message.

The attribute computations in the attribute grammar for MiniLAX are grouped into
modules (see Example 5). We present excerpts from three modules that are involved in the sym-
bol table problem. The part of the module Decls shown in Example 5 specializes the computa-
tion of the attribute Next:ObjectsIn for the concrete declarations of the language. This way the
information in the symbol table is extended by the kind of the declared object, the type of vari-
ables, and the formal parameters of procedures.

The module named Env specifies all computations for the environment attribute. It is
reproduced completely. All node types whose subtrees can contain applications of objects need
an environment attribute Env and become therefore subtypes of the abstract type ENV: Decls,

8

Example 5:

MODULE Decls

Proc = { Next:ObjectsIn := mProc (ObjectsIn, Ident, Formals); } .

Var = { Next:ObjectsIn := mVar (ObjectsIn, Ident, Type); } .

END Decls

MODULE Env

Decls <- ENV = .

Stats <- ENV = .

Actuals <- ENV = .

Expr <- ENV = .

MiniLax = { Proc:Env := NoEnv ; } .

DECL := { Next:Env := NoEnv ; } .

Decl = { Next:Env := Env ; } .

Proc <- SCOPE = { Objects := Decls:ObjectsOut;

Stats:Env := NewEnv ;

Decls:Env := NewEnv ; } .

END Env

MODULE Conditions

Call = { CHECK IsObjectKind (Object, Proc)

==> Error ("only procedures can be called", Pos); } .

Ident = { CHECK IsObjectKind (Object, Var)

==> Error ("variable required" , Pos); } .

END Conditions

Stats, Actuals, and Expr. The first attribute computation of Proc connects the "interfaces" of the
abstract types DECLS and SCOPES. The attribute Decls:ObjectsOut is the collected list of
locally declared objects. It is assigned to the attribute Objects which is required to hold this
information from the point of view of the abstract type SCOPE. SCOPE computes an attribute
NewEnv describing the objects visible inside the procedure. The value of this attribute is passed
to the attributes Stats:Env and Decls:Env to make the environment available for the components
of the procedure. The rules given in the module Env suffice to specify all computations neces-
sary for the environment attribute. The many missing rules are inserted automatically by the tool
ag as simple copy rules.

Finally, the module Conditions adds checks to the locations where objects are used. The
abstract type USE already checks whether an object is declared or not. We still need to check if
an object is of the right kind. This test is performed by the external procedure IsObjectKind.

6. Comparison

This section compares object-oriented attribute grammars as introduced in this paper with
the well-known concepts of (attribute) grammars, tree and record types, type extensions, and
object-oriented programming. The goal is to reveal the common properties as well as the differ-
ences among these concepts. These areas are related because of the following reasons: attribute
grammars are usually based on context-free grammars. An attribute grammar specifies an
evaluation of attributes of a tree defined by such a context-free grammar. Trees can be imple-
mented using a set of record type declarations. Therefore context-free grammars, trees, and
record types deal more or less with the same concept. Table 1 compares the most important
notions from these areas. Additionally we included the notions from the area of object-oriented
(oo) programming as described e. g. in [Bla89].

9

iii
(attribute) grammars trees types oo-programmingiii
rule node type record type class
attribute field in a node type record field instance variable
nonterminal set of node types union of record types -
terminal distinct node type record type without -

pointer fields
rule application tree node record variable object, instance
attribute computation - procedure declaration method
- - procedure call message
- - base type superclass
- - derived type subclass
- - extension inheritanceiiic
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1: Comparison of notions from the areas of grammars, trees, types, and oo-programming

Object-oriented attribute grammars are missing in Table 1. For them we used the notions
from attribute grammars and added the notions node type, base type, subtype or derived type,
and inheritance from the other areas.

6.1. Attribute Grammars

Conventional grammars in BNF allow several productions with the same nonterminal sym-
bol on the left-hand side. A node type in object-oriented attribute grammars, which corresponds
to a nonterminal as well as to a rule name, has exactly one right-hand side. The selector names
can be regarded as syntactic sugar. To allow for several different derivations, a subtype relation
between node types is added. During a derivation, a node type may be replaced by its right-hand
side or by a subtype. Inheritance is a notation to factor out parts that are common to several
node types such as right-hand sides, attributes, and attribute computations. Fortunately, attri-
butes local to a rule (node type) are possible without any special construct.

Object-oriented attribute grammars are a notation to write BNF grammars in a short and
concise way and where the underlying tree structure can be exactly described. With respect to
attribute grammars the same notational advantages hold. Attribute grammars are a special case
of object-oriented attribute grammars. They are characterized by a one level subtype hierarchy,
right-hand sides and attribute computations are defined for subtypes only, and attributes are
associated only with base types. In terms of attribute grammar classes or attribute grammar
semantics object-oriented attribute grammars are equivalent to attribute grammars.

6.2. Trees and Records

When trees are stored in memory, they can be represented by linked records. Every node
type corresponds to a record type. Object-oriented attribute grammars directly describe the struc-
ture of attributed syntax trees. The node types can be seen as record types. The right-hand side
elements resemble pointer valued fields describing the tree structure and the attributes are addi-
tional fields for arbitrary information stored at tree nodes. The field name and field type needed
for record types are also present in the node types of object-oriented attribute grammars.

6.3. Type Extensions

Type extensions have been introduced with the language Oberon by Wirth [Wir88a,
Wir88b, Wir88c]. They allow the definition of a record type based on an existing record type by
adding record fields. This extension mechanism induces a subtype relation between record types.
The subtype and inheritance features are equivalent in object-oriented attribute grammars and

10

type extensions with the difference that Wirth uses the word extension in place of inheritance
and restricts it to single inheritance.

6.4. Object-Oriented Programming

The concepts of subtype and inheritance in object-oriented attribute grammars and
object-oriented programming have many similarities and this explains the name object-oriented
attribute grammars. The notions class, instance variable, object, superclass, and subclass have
direct counter parts (see Table 1). There are also some differences. Object-oriented program-
ming allows an arbitrary number of named methods which are activated by explicitly sending
messages. In object-oriented attribute grammars there is exactly one attribute computation for an
attribute. This computation corresponds to an unnamed method. There is nothing like messages:
The attribute computation for an attribute is activated implicitly and exactly once.

7. Summary

We presented object-oriented attribute grammars with single and multiple inheritance. The dis-
tinction between abstract types and node types allows for a restricted form of multiple inheri-
tance that can still be implemented efficiently. The nonterminals or node types are the entities
constituting the inheritance hierarchy. The items that are subject to inheritance are right-hand
side elements, attributes, and attribute computations.

Object-oriented attribute grammars are a compact and flexible notation for language
specifications. The repetition of information is avoided as common parts can be factored out.
The reuse of definitions is supported - new definitions can be derived from existing ones by spe-
cializations.

We extended the attribute evaluator generator ag to process object-oriented attribute gram-
mars with multiple inheritance. It turned out that it is possible to generate efficient attribute
evaluators for this kind of attribute grammars.

While we are very satisfied with the advantages of single inheritance we have just started to
explore the feasibility of multiple inheritance. Our current goal is to build a collection of attri-
bute grammar modules containing abstract types that model concepts of programming languages
such as the discussed symbol table. Together with abstract data types these will result a library
of reusable parts oriented towards semantic analysis of programming languages. If possible
those parts will be designed to specify aspects of semantic analysis independent of concrete
languages.

References

[Bla89] G. Blaschek, Implementation of Objects in Modula-2, Structured Programming 10,
3 (1989), 147-155.

[Gro89] J. Grosch, Ag - An Attribute Evaluator Generator, Compiler Generation Report No.
16, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Aug. 1989.

[Gro90a] J. Grosch, Object-Oriented Attribute Grammars, in Proceedings of the Fifth

International Symposium on Computer and Information Sciences (ISCIS V), A. E.
Harmanci and E. Gelenbe (ed.), Cappadocia, Nevsehir, Turkey, Oct. 1990, 807-816.

[Gro90b] J. Grosch, Specification of a Minilax Interpreter, Compiler Generation Report No.
22, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Mar. 1990.

[GrE90] J. Grosch and H. Emmelmann, A Tool Box for Compiler Construction, LNCS 477,
(Oct. 1990), 106-116, Springer Verlag.

[Hed89] G. Hedin, An Object-Oriented Notation for Attribute Grammars, Proc. of the

European Conference on Object-Oriented Programming (ECOOP ’89),

11

Nottingham, 1989, 329-345.

[Knu68] D. E. Knuth, Semantics of Context-Free Languages, Mathematical Systems Theory

2, 2 (June 1968), 127-146.

[Knu71] D. E. Knuth, Semantics of Context-free Languages: Correction, Mathematical

Systems Theory 5, (Mar. 1971), 95-96.

[Kos91] K. Koskimies, Object-Orientation in Attribute Grammars, LNCS 545, (1991), 297-
329, Springer Verlag.

[Wir88a] N. Wirth, Type Extensions, ACM Trans. Prog. Lang. and Systems 10, 2 (Apr. 1988),
204-214.

[Wir88b] N. Wirth, From Modula to Oberon, Software—Practice & Experience 18, 7 (July
1988), 661-670.

[Wir88c] N. Wirth, The Programming Language Oberon, Software—Practice & Experience

18, 7 (July 1988), 671-690.

1

Contents

Abstract .. 1

Keywords ... 1

1. Introduction .. 1

2. Single Inheritance .. 2

3. Example ... 3

4. Multiple Inheritance ... 4

5. Example ... 5

6. Comparison .. 8

6.1. Attribute Grammars ... 9

6.2. Trees and Records .. 9

6.3. Type Extensions ... 9

6.4. Object-Oriented Programming .. 10

7. Summary .. 10

References .. 10

